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Evaluation of the energy barrier distribution in
many-particle systems using the path integral approach
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Abstract. We present a numerical method for the evaluation of the distribution of energy
barriers between metastable states in many-particle systems with arbitrary interparticle
interaction. The method is based on the search for the optimal path between the two given
metastable states using the minimization of the corresponding action occurring in the Onsager–
Machlup functional for the probability of transition between these two states.

The problem of evaluating the probability of transition between metastable states in various
systems with many degrees of freedom is one of the most important and difficult tasks in
many areas of physics [1], particularly in studying disordered systems (like spin glasses)
with a strong interparticle interaction where disorder and frustration make both analytical
and numerical calculations extremely difficult (see the review articles [2, 3]).

For energy barriers1E comparable with the temperatureT , direct Monte Carlo
simulations of the escape over the barrier based on the Langevin equations are possible
[1, 4, 5]. However, for the most interesting situation—high energy barriers (or in the
low-temperature limitT � 1E)—such simulations are almost useless because the mean
escape time grows exponentially with the barrier height. On the other hand, in this case the
task is somewhat simpler because it is sufficient to find the lowest saddle point (its height
will give the corresponding energy barrier1E) between the two chosen energy minima
and then calculate the transition probabilityp using the Arrhenius–Van’t Hoff formula
(p ∼ exp(−1E/T )).

Unfortunately reliable analytical and semi-analytical methods for searching for saddle
points in such systems are applicable only for the single-particle case [6, 7] and the few-
particle case (for one of the latest attempts, see [8]), so the problem is still far from its
final solution. In this letter we propose a method for energy barrier evaluation based on the
search for the optimal transition path between the two given metastable states by minimizing
the corresponding action derived from the path integral formulation of the problem.

To explain the basic idea, we start with a system ofN classical particles having
coordinatesx = (x1, . . . , xN) and velocitiesẋ. The equations of motion for these particles
in the presence of thermal fluctuations (Langevin equations) can be written as

ẋi = −∂V (x)
∂xi

+ ξi(t) i = 1, . . . , N (1)

whereV (x) is the system energy including the interparticle interactions; we have neglected
the inertial term for the sake of simplicity and absorbed the friction constant into the
time scaling. Random (thermal) Langevin forcesξi can be considered in most cases as
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independent Gaussian random quantities with zero correlation time [1]:〈ξi(0)ξj (t)〉 =
2Dδij δ(t) (whereD ∼ T ). Using these assumptions and rewriting the equations (1)
as ξi(t) = ẋi + ∂V (x)/∂xi , we immediately obtain that the probability of observing a
given trajectoryx(t) for the transition between the two statesA andB during the time
tf (xA(0)→ xB(tf )) is [9, 10]

P [x(t)] ' J [x] exp

[
−S(x(t))

4D

]
(2)

whereJ [x(t)] is the Jacobian of the variable transformationx→ ξ and theactionS(x(t))
is defined as

S(x(t), tf ) =
∫ tf

0
dt
∑
i

(
dxi
dt
+ ∂V (x)

∂xi

)2

. (3)

The total transition probabilityPtot(A→ B, tf ) is then given by the integral of (2) over
all pathsx(t). Evaluation of this path integral is an immense task for any strongly interacting
system. However, in the low-temperature limit it is evident that the main contribution to
Ptot comes from the trajectories which are close to the optimal trajectoryxopt(t), i.e. to the
trajectory which minimizes the actionS(x(t)), and the energy barrier for the given transition
can be found as the barrier along this trajectory:1E(A → B) = Emax(xopt) − EA. The
problem that we are left with is the minimization of the functionalS(x).

It is obviously impossible to minimize it analytically for any realistic model. Among
the two main numerical possibilities—(i) solution of the boundary value problem for the
Euler–Lagrange equation(s) for this functional and (ii) minimization of the many-variable
function resulting from the approximation of the integral (3) by some numerical quadrature
formula—we have chosen the latter method as the faster one. Dividing the time interval
[0, tf ] into K slices and approximating (3) by the simplest quadrature, we obtain

Sdisc(x) = 1t
K−1∑
k=0

N∑
i=1

[
xi,k+1− xi,k

1t
+ 1

2

(
∂V {xk+1}
∂xi,k+1

+ ∂V {xk}
∂xi,k

)]2

(4)

where1t = tf /K, xi,k is the coordinate of theith particle at the timetk = k 1t andxk
denotes the set of all particle coordinates for thekth slice.

For the determination of the number of slicesK necessary for the accurate determin-
ation of the energy barrier we have minimized the action (4) with the constant time step
1t and variousKs. Starting from some smallK (K1 = 16) we increased it for the
next action minimization(Kl+1 = 2Kl) until the relative difference between the energy
barriers obtained for the subsequent minimizations was sufficiently small (less than 1%:
|(El − El+1)/El| < 0.01).

As the simplest possible test of the whole method, we have calculated an optimal
trajectory for a particle moving in the 2D space(x1, x2) between the two minima in the
potential

V (x) =
∑
j

Uj

1+ ((x− rj )/1j )2 (5)

where the parameterrj determines the position and1j the width of thej th peak(Uj > 0)
or hole (Uj < 0). The result of such a test for the energy surface possessing two peaks
P1 and P2 and two holes M1 and M2 is shown in figure 1. The starting trajectory for the
minimization process was a straight line between M1 and M2. The final trajectory shown
in figure 1 clearly passes through a saddle point providing the correct value of the energy
barrier.
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For many-particle systems of real interest with the particle numberN � 1, the discrete
action (4) depends on a huge number of variables(∼NK) which makes its minimization
very time consuming. But although technically very difficult, the minimization of (4) is not
itself the main problem in the optimal trajectory search. The main problem is the presence
of many ‘false’ local minima of the functional (3), i.e. trajectories between the two states
which minimize (3) but do not provide any information about the corresponding energy
barriers.

Figure 1. The optimal trajectory (white line) for
the particle transition between the two minima
M1 and M2 for the potential of the type (5) found
by the minimization of the action (4). The grey-
scale map is used to show the potential values.

Such a variety of the local minima of the action is due to the following two facts [11].
First, any trajectory (path) which goes between the two energy minima along the gradient
lines of the energy surface (i.e. for whichẋi = ±∂V {x}/∂xi) provides a local extremum to
the actionS(x). Second, theS(x)-value along the optimal path depends only on the sum
of the energy barriers1E which the path has to climb over.

Using the first statement it is easy to construct an example of an energy surface where
there would exist two optimal trajectories between the given energy minima where (i) the
first trajectory goes through some intermediate energy minimum, thus climbing subsequently
over two energy barriers, and (ii) the second path goes through the energy maximum (but
still along the gradient lines). If, in addition, the sum of the two barriers along the first path
is equal to the height of the energy maximum on the second trajectory, the action values
for the two trajectories would be the same. Thus no algorithm based on action evaluation
alone would be able to choose between these two paths, which are from our point of view
clearlynot equivalent, because the second trajectory does not contain any information about
the energy barriers in the system.

For this reason we have constructed a special algorithm which is able to distinguish
between the two kinds of optimal trajectory described above by analysing the trajectories
themselves. The algorithm (details of which will be published elsewhere) checks whether
the trajectory goes through a saddle point or an energy maximum by minimizing the energy
starting from the points lying in the vicinity of the optimal trajectory and analysing local
minima on the energy landscape obtained this way. In all of our tests the algorithm
could extract ‘true’ optimal trajectories from a large variety of the paths found by action
minimization with different starting trajectories.
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To demonstrate the implementation of the method for the systems of interacting
magnetic moments we consider for definiteness a system of small identical absolutely single-
domain ferromagnetic particles with the volumeV and the saturation magnetizationMs ; the
extension of the method to a classical spin glass of any kind is obvious. It is convenient to
start with the system of the Landau–Lifshitz–Gilbert equations of motion for the reduced
particle magnetizationsmi =Mi/Ms in the presence of thermal fluctuations (see [12] for
details):

dmi

dt
= γ

[
mi ×

(
heff
i − η

dmi

dt
+ hLi

)]
i = 1, . . . , N (6)

where γ = Msγ0 (γ0 is the gyromagnetic ratio),η denotes the dissipation constant and
the reduced fieldsh = H/Ms have been introduced. The random (Langevin) fieldhLi
simulates the effect of thermal fluctuations and the ‘usual’ effective fieldheff

i is the negative
derivative of the system energyE (measured in units ofM2

s V ) over the corresponding
magnetization:heff

i = −∂E/∂mi . In the large-dissipation limitηγ � 1 (which means the
same as neglecting the inertial term in (1)) this equation can be rewritten in the form

ṁi = −
[
mi × [mi × htot

i

] = −mi (mi · htot
i )+ htot

i (7)

where all of the constants are absorbed in the time unit, the total field ishtot = heff + hL
and the normalizationm2

i = 1 was used in the last transformation.
Changing to the spherical coordinate system (SCS) for the magnetic moments (so that, as

usual,mxi = sinθi cosφi, m
y

i = sinθi sinφi, m
z
i = cosθi) we obtain the required equations

of motion for the magnetization angles:

θ̇i = −∂E{�}
∂θi

+ hLi,x ′ (8)

sinθiφ̇i = − 1

sinθi

∂E{�}
∂φi

+ hLi,y ′ (9)

wherehLi,x ′ andhLi,y ′ are Cartesian components of the Langevin field in the coordinate systems
‘attached’ to theith magnetic moment. The components ofheff are already expressed as
the corresponding angular derivatives of the system energyE{�} (where� denotes the
set of all of the angles(θi, φi)) which may include interparticle interaction of any kind,
i.e. exchange, RKKY or dipolar.

The system (9) is fully analogous to (1), so under the same assumptions concerning the
Langevin field, the action for the transition path�(t) between the two chosen magnetization
states�A and�B is

S[�(t)] =
∫ tf

0
dt
∑
i

[(
dθi
dt
+ ∂E{�}

∂θi

)2

+
(

sinθi
dφi
dt
+ 1

sinθi

∂E{�}
∂φi

)2
]
. (10)

The magnetization path in the�-space which minimizes this functional can provide
information about the energy barrier separating the states�A and�B in the same way as
for a system of ‘usual’ particles (see above).

To find this optimal path, we have minimized the discrete representation of the action
(10) (analogous to (4)) as a function of the orientation angles(θi,k, φi,k). The checking
procedure mentioned above was applied to each path found in this way to ensure that it
really passes through the saddle points. The energy barrier encountered along the ‘true’
optimal trajectory was assumed to be the lowest barrier between the states�A and�B .

The minimization procedure for the discrete representation of (10) is subject to the
stability problems specific to the spherical coordinates: the factors 1/ sinθi in (10) diverge
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for any trajectory closely approaching the polar axis of the corresponding SCS (θi → 0 or
θi → π ). For this reason one has to choose a suitable SCS for each particle separately at
the beginning of the minimization procedure and also to switch to another set of spherical
coordinates for particles whose trajectories become too close to the polar axis of their SCS
during the minimization process. This prevents, in particular, the use of the most powerful
standard minimization technique—the conjugate gradient method [13]. For this reason we
have chosen for the action minimization the improved version of the ‘equation-of-motion’
method (see, e.g., reference [13]). This improved version was developed by A Hubert,
K Ramsẗock and the author and is described in [14].

The method was first tested on a single particle having uniaxial magnetic anisotropy
with the energyEan= 0.5βM2

s V sin2ψ , whereβ is the reduced anisotropy constant (for the
easy-axis case,β > 0) andψ is the angle between the easy axisn and the particle moment
m. In the absence of the external field such a particle has two equivalent (meta)stable
magnetization states along the two opposite directions of the anisotropy axis separated by
the reduced energy barrierε ≡ E/(M2

s V ) = β/2. The barrier found by our algorithm
agreed with this value within the numerical accuracy.

Figure 2. Energy barrier distributions found by our algorithm for the system ofN = 128
‘dipolarly’ interacting magnetic particles with the uniaxial anisotropy(β = 2.0) for various
particle volume fractionsη as shown in the figure.

In the next test a system ofN = 128 non-interactingparticles with different anisotropy
constantsβi was considered, which has (in the absence of the external field) 2N energy
minima with the same (zero) energy. From the physical point of view it is evident that
transitions between these local minima occur via the single-particle moment jumps between
the opposite directions of the anisotropy axis. In all of the cases studied, our algorithm was
indeed able to find the connected path between the two chosen energy minima consisting
of the single-moment flops (i.e. the transition trajectory which passed through the saddle
points only). The energy barriers along this path for the jump of theith moment agreed
with the values evaluated asεi = βi/2.

The last test was performed for a system ofN = 128 ‘dipolarly’ interacting particles
with equal anisotropiesβ0 = 2.0. The particles were positioned randomly but not
overlapping in the cubic volume; periodic boundary conditions were assumed.

The energy barrier distribution for various particle volume concentrationsη obtained
by our algorithm is shown in figure 2. The following numbers of transitions between
various pairs of the metastable system states which passed through the saddle points were
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found and used to build the histograms in figure 2: forη = 0.001, Ntr = 90 transitions;
for η = 0.01, Ntr = 194 transitions; forη = 0.08, Ntr = 266 transitions; and for
η = 0.24, Ntr = 159 transitions (the number of energy barriers was correspondingly
twice as large). The whole calculation took about two weeks on the HP-Workstation 712/60
(60 MHz, 32 Mbyte RAM, program code written in Fortran).

As expected, for the lowest concentration (η = 0.001; figure 2(a)), where the interactions
are negligible, almost all of the barriers are nearly equal to the single-particle barrier
ε = β0/2 = 1.0. For the next volume concentrationη = 0.01 (figure 2(b)), there already
exist a considerable number of barriers with other (mostly lower) values. They arise due
to the quite strong interaction of closely positioned (by chance) particles: the reduced
interaction field from the nearest possible neighbourh

dip
max (=H dip

max/Ms) ∼ 1 is of the same
order of magnitude as the maximal anisotropy fieldhan

max ∼ β0 = 2.0. For systems with
moderate (η = 0.08; figure 2(c)) and high (η = 0.24; figure 2(d)) concentrations the energy
barrier distribution is qualitatively different: it is shifted towards the lower energies, so for
η = 0.24 the low-energy barriers clearly dominate.

Although our results for interacting systems are preliminary, some comments concerning
their possible comparison with the experiment are in order (unfortunately there are to our
knowledge no analogous theoretical results). There are at least two kinds of measurement
which our results can be related to:

(i) measurements of the magnetic viscosity in fine-particle systems indicate faster
relaxation for higher particle concentrationsη (see, e.g., [15, 16]), thus seeming to support
our conclusion that the barrier distribution is shifted towards the lower energies whenη

increases; and
(ii) studies of the concentration dependence of the ac susceptibility for the frozen

ferrofluids (like those presented in [17]) show that the interparticle interactions lead to
higher energy barriers, which contradicts our results.

Here we would just like to point out that the establishing of the relationship between
all of these experiments and our data is by no means trivial, for at least the following
reasons (apart from the obvious one that real systems always have a broad distribution of
single-particle parameters):

(i) all of the experiments were performed at finite (and not even atlow) temperatures,
so the density offree-energy barriers is required for their interpretation;

(ii) different moment changes occur by transitions over different barriers; and
(iii) due to the interparticle interaction each transition changes the heights of other

barriers.

Clearly further investigations are necessary.
In conclusion, we have developed and tested a numerical method suitable for the

calculation of the energy barrier distribution in many-particle systems with continuous
degrees of freedom and arbitrary interparticle interaction.
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